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AIlIIrad-We consider the problem of maximizilll the intqral stiffness of solid elastic plates described by
tbiD p\ate theory. ASSUlIIina the material volume and plate domain to be given, we use the plate thickness
function u the desip variable and take both maximum and minimum allowable thickness values into
account 011 the buis of a convenient tensorial formulation of the problem, where the IOvemiDa equations
are derived by variational analysis and constitute necessary conditions for stationarity, we develop an
etIiclent and quite ICneral numerical ataorithm by means of which a number of stationary solutions for
rectaaau1ar 8Dd axisymmetric annular plates with various boundary conditions are obtaiDed.

T'bese numerical mutts enable us to investipte the optimization problem itself in terms of its major
parameters, particularly the maximum and minimum values specified for the plate thickness. For problems
associated with tarae ratios between these constraint values. plate desips with sipificant intqral stiffeners
are obtained. We find .however, that these desips are only local optima and that a IIobal optimal plate
thickness function does aeneratly neither exist witbiD the class of smooth functions nor witbiD the class of
smooth functions with a finite number of discontinuities. In order to determine a atobal optimal solution
usoc:iated with given thickness constraint values, it is therefore necessary to cbanae the optimal design
formulation. Wdh implications for a number of similar two-dimensional optimization problems, our results
offer valuable indications of the lines 110111 which such chanaes should be performed.

INTRODUCTION
Optimal de.sign problems for thin, solid elastic plates of non-uniform thickness are considerably
complicated by an inherent cubic relationship between the plate bending rigidity and thickness.
This non-linear relationship is the cause of the difficulty[1-3] that the field equations for
stationarity are only necessary conditions for optimality and do not ensure global optimality of
a possible solution. Moreover, due to the cubic relationship mentioned, the governing field
equations for the plate become a highly nonlinear and strongly coupled system of integro-partial
differential equations, the complexity of which readily excludes the possibility of closed form
solutions. The search for solutions and investigations of many significant features of plate
optimization problems as well, must therefore be based on numerical methods specially
developed for these purposes.

Numerical solutions to geometrically unconstrained solid plate optimization problems, i.e.
problems where no constraints are specified for the plate thickness function, are published in
[4-8]. These solutions all have smoothly varying thickness distributions, but as is argued in
different ways in [2,3,7,9-11], plate designs with integral stiffeners will be associated with
more optimal properties. The advantage of a direct use of stiffeners for reinforcement has been
demonstrated in different contexts in [12-16]. Smooth, stationary solutions obtained to
geometrically unconstrained formulations for optimal design must consequently be considered
as local optimal solutions, see [2,3,7,9, 17, 18].

Thus, we are confronted with the paradoxical situation that optimal plate designs must be
expected to have integral stiffeners, but that such solutions have yet not been obtained by
optimization. This paradox is previously studied in [17] by way of introducing suitable
singularities into a geometrically unconstrained plate optimization problem. This problem was
thus shown to possess several local optimal solutions with stiffener-like thickness distributions
between the singularities. It was also found in [17] that the optimal characteristics of the local
optimal solutions increase rapidly with the number of stiffeners contained in the solutions, but
that a global optimal solution does not exist when no constraints are prescribed for the plate
thickness function. The latter result is later confirmed mathematically in [2,3].

It is the objective of the present paper to investigate a reformulation of the plate
optimization problem, where both maximum and minimum constraints are considered for the
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plate thickness function. As before. the available volume, material, domain and boundary
conditions for the plate are assumed to be given. We consider the problem of maximizing the
stiffness (minimizing the compliance) subject to a given transverse load distribution on the
plate. To some extent, this problem is less complicated than designing with respect to other
objectives, but it contains all the significant features that are inherent in optimal design of
plates. Maximum stiffness design of solid plates has previously been considered in
[3,4,8,11,16,19-21], of sandwich plates in [22,23] and of other structures in, e.g. [24-26].

In Section 1, we state the plate equations and three sets of homogeneous boundary
conditions in tensor form. This is the outset for the derivation in Section 2 of a general set of
necessary conditions for optimality from the principle of minimum potential energy by
variational analysis. In Section 3, we then develop a stable and effective numerical solution
procedure based on successive iterations, which can be used for any particular coordinate
system chosen for the plate. In Section 4 the set of tensorial governing equations are
specialized to Cartesian coordinates and solved for simply supported and clamped rectangular
plates by means of the aforementioned numerical procedure. Using polar coordinates as a
reference frame in Section 5, we present a number of results for axisymmetric annular plates
with various combinations of boundary conditions. Here, the loading is assumed to vary
harmonically in the circumferential direction, which implies that the governing equations for
optimality are reduced to a set of ordinary integro-differential equations.

The numerical results presented in Sections 4 and 5 display significant features: a definitive
tendency towards formation of stiffeners and the existence of different local optimal plate
designs. Furthermore, for problems associated with large ratios between the maximum and
minimum thickness constraints, a global optimal design does not seem to exist within the class
of thickness functions considered in the present formulation; our results indicate, as is
discussed in Section 6, that such a design should be sought within a class of plates that has an
infinite number of infinitely thin stiffeners.

I. PLATE EQUATIONS IN TENSOR FORM

We consider a thin, solid, elastic plate of variable thickness, whose mid-plane occupies a
given domain n with the contour w in the Xl - x2-plane of some three-dimensional coordinate
system Xi, the x3-axis of which is assumed to be perpendicular to the Xl - x2-plane. The plate is
assumed to be loaded transversely by a given static load of intensity p(x l

, x2
), and the equation

of equilibrium in the x3-direction can then be written in the general form [27,28]

(I)

Here and in the following, Greek indices take values and 2 and repeated indices imply
summation.

In eqn (I), da denotes the operator of covariant differentiation with respect to the coordinate
of index a, and Ma fJ is the contravariant, second order moment tensor

(2)

where the scalar function w(xa ) denotes the plate deflection in the x3-direction, aafJ is the
contravariant metric tensor for the plate mid-plane coordinates xa and d a =aaYdy is the
operator of contravariant differentiation.

The function D(xa
) in eqn (2) identifies the plate bending rigidity

(3)

Within thin plate theory, this is a scalar function (i.e. independent of orientation) and it is noted
to be cubic in the thickness function h(xa

) for solid plates. The constants E and II denote
Young's modulus and Poisson's ratio, respectively, of the plate material.



An investiption concerning optimal design of solid elastic plates 307

By substituting eqn (2) into eqn 0), we obtain the following fourth order, partial differential
equation for the deftection function w(x") of a plate of variable thickness

(4)

At the contour <d of the plate, we consider the possibility that either of the following three
sets of linear, homogeneous boundary conditions may be prescribed, namely, the conditions for
a simple supported plate edge

w=o, MB(w)=O x.. E <d,

the conditions for a clamped edge

W =0, l/!(w) = 0 x.. E <d,

or the conditions for a free edge (assuming the plate to be supported elsewhere)

M'B(W)=O, Q(w)=O x.. E <d.

(Sa)

(5b)

(Sc)

In (Sb), l/! = ""d..w identifies the scalar slope of the deflection w normal to the curve <d, and
in (Sa) and (Sc),

(6)

and

(7)

represent, respectively, the effective bending moment and the effective (Kirchhoff) shear force
per unit length of the curve <d. Here, ".. and t. denote, respectively, the outward unit normal
vector and the unit tangential vector in the x· plane to the curve <d.

By means of the expressions for l/!, MB and Q given above, and the expression for M../J in
eqn (2), all the boundary conditions (Sa)-(Sc) can readily be written in terms of w.

2. GENERAL FORMULATION OF THE OPTIMIZATION PROBLEM

Using the plate thickness function h(x·) as the design variable, it is now our objective to
maximize the integral stiffness of the plate subject to a given transverse load distribution p(xa )

and given boundary conditions. This problem is equivalent to minimization of the compliance

(8)

that is, the work done by the applied forces.
The optimization is to be performed under the condition that the total volume of plate

material

(9)

is prescribed. The domain n and the material constants E and 11 of the elastic plate are assumed
to be given as well.

In addition to the integral constraint (9) for our design variable h(xa
), we also assume that a

maximum and a minimum allowable value (hrnax and hrpin, respectively), are specified for h, i.e.
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hmax :5 h(xQ ):5 hmin • These inequality constraints are easily transformed into equality constraints

(10)

(1 I)

by means of the real slack variables u(xQ
) and 7'(xQ

).

We now apply a variational formulation of the optimization problem stated above and
construct an augmented functional 1f*,

1f* =IopwdO- Io Tj[dadjl[D{(l- lI)dad/3w+ lIa a/3dydYw}]-p]dO+A [Io hdO- V]

- Io A[h - hmax +0'2] dO - Io K[hmin - h+7'2] dO (12)

where the plate differential eqn (4), the volume constraint (9), the geometric maximum
constraint (10) and minimum constraint (11), respectively, are adjoined to the functional 1f of
eqn (8) by means of Lagrangian multipliers Tj(xa), A, A(xa

) and K(Xa ). The principle of
stationary potential energy and the introduction of the Lagrangian multipliers permit us to take
independent variations of 1f* with respect to its variables in the following.

The set of necessary governing equations for our optimization problem now consists of the
Euler-Lagrange equations expressing stationarity of 'IT* for arbitrary admissible variation 8w,
8h, 8u and 87', in addition to the constraint eqns (4), (9), (10), (11), and the particular set of
boundary conditions (Sa), (5b) or (5c) under consideration.

As is shown in the Appendix, the condition of stationarity of 1f* with respect to variation of
w leads to the result that the Lagrangian multiplier function Tj(xa) satisfies the same differential
eqn (4) and particular set of boundary conditions (Sa), (5b) or (5c) as does the function w(xa

).

Hence, we have

(13)

When deriving the condition of stationarityt of 'IT* with respect to variation of the design
variable h(xQ

), the so-called optimality condition, it is useful to write the second integral on the
r.h.s. of eqn (12) in terms of Ma/3 by means of eqn (2), and to eliminate Tj by means of (13).
Performing the variation with subsequent application of the divergence theorem and the
boundary conditions for w(xa

) as shown in the Appendix, we arrive at the result

(14)

where Ma/3 is the moment tensor corresponding to the deflection function w(xa
). If we

introduce the design variable h(xa
) by means of eqn (3) and redefine Lagrangian multipliers A,

A(xa
) and K(X a

) by a simple scaling factor, the optimality condition (14) can be written in the
form

(15)

The variation of 'IT* with respect to 0' and 7', respectively, gives the switching equations

Au =0

and

K7' = O.

tThe condition is necessary but not sufficient for global optimality.

(16)

(17)
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Comparina these equations with the definina eqns (10) and (11) for the slack variables u(x") and
"x"). we are able to deduce the following results by studying possible combinations of a and
T: If (J'J1. 0 and "J1. O. then we have A=K =0 and hmax < h< hmin, i.e. the thickness function is
unconstrained at the point considered. If u" 0 and T = O. then Ie = 0 and h = hmin, that is, the
thickness is constrained from below. If we have (J' =0and rJl. 0, then A=0and h =hmu• i.e. h
is constrained from above. The combination (J' =T =0 is not possible since we assume
hraax > hmin•

The above results enable us to eliminate the functions A, K, U, T and instead introduce the
unions 0"0' 011 and O.,b of subdomains in 0 (0 =0"0 U 011 U O.,b), where the plate thickness
h(x") is constrained from above, unconstrained and constrained from below, respectively.
Introducina the short-hand notation g for the scalar function

g(x") =(I + v)MIltIJMIltIJ - vMIIt"Ml,

we can then write the following convenient formula for the plate thickness function h,

{

hmax if (g(X")/A)114 ~ hmax ' x« E Oco

h(x") = (g(x")fA)II4, x" E 011

hmin if (g(x")1A)l/4 S hmin, x" E Ocb

(18)

(19)

where the expression for h in the (unions of) unconstrained subdomain(s) 011 (with A= K = 0)
follows from eqns (15) and (18).

Now we only need a suitable expression for the Lagrangian multiplier A. Substituting eqn
(19) into the volume constraint (9) and solving for A. we obtain

(20)

In summary. the complete system of necessary conditions for our optimization problem
consists of eqns (2)-(4), (8) and (18)-(20), together with a particular set of the boundary
conditions (Sa), (Sb) or (Sc). This system of equations is seen to constitute a coupled, non-linear
integro-partial differential boundary value problem with unknown interior boundaries, and
closed form solutions cannot be expected. The principal unknowns to be determined are the
minimum compliance 1f', the associated deflection w(x") and the thickness function h(x"), of
the optimal plate. which in turn require determination of the Lagrangian multiplier Aand the
subdomains nL'O' 011 and O.,b'

The given quantities for a particular problem can be summarized as the followina: the type
of coordinate system Xl, the plate domain n with contour (J) and transverse static load
distribution p(x"). the total plate volume V, the minimum and maximum allowable values hmin
and hmax for the plate thickness. and the constants E and v for the plate material.

3. SOLUTION PROCEDURE BASED ON SUCCESSIVE ITERATIONS

In order to solve the governing non-linear, integro-partial differential boundary value
problem, i.e. eqns (2)-(4), (8) and (18)-(20), which, together with a given set of boundary
conditions (Sa). (Sb) or (Sc), constitute the mathematical formulation of our plate optimization
problem, we apply a numerical solution procedure based on successive iterations.

The general iteration scheme constructed and used as a basis for obtaining all the numerical
results presented in this paper has the following form:

START Take h(x") arbitrarily together with nco, 011 and O.,b such that In. dO >O.
I Compute D(x") by eqn (3).

II Solve w(xllt
) from discretized version of differential eqn (4) and boundary

conditions (Sa), (5b) or (5c).
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III Compute M"~ by eqn (2), determine M..~ and M..", and compute g(x") by eqn
(18).

IV Compute Aby eqn (20).
V Determine h(x") together with Oca, Ou and Ocb from eqn (19).

VI Go to IV if h(x") has not converged in the inner iteration loop IV-VI.
VII Go to I if h(x") and hence all other iterates have not converged in the main

iteration loop I-VII.
VIII Compute 'IT by eqn (8).

In this scheme, the functions are iterates represented by their discrete values at a number of
fixed mesh points in the domain 0 and at its contour ill embedded in the x.. plane of a given
coordinate system. For a given set of .mesh points, the sequence of iterates is found to converge
rapidly towards the numerical solution, especially if the ratio hmulhmin is not taken too large
(i.e. greater than about 5). However, as will be outlined and discussed in the subsequent
sections, our numerical study reveals that in some problems, i.e. for given 0, p(x"), V, hmin,

hmax, E and v, the numerical solution to the discretized problem is significantly dependent on
the fineness of the grid used in the computations.

4. RECTANGULAR PLATES

When dealing with rectangular plates, it is convenient to select Xi as a Cartesian coordinate
system. Then the components of the metric tensor for the plate mid-surface are given by

a"~ =a .. =a ={I O}
~ ..~ 0 1 ' (21)

which implies that no distinction is necessary between contravariant, mixed and covariant
components of similar indices of any Cartesian tensor and that the Christoffel symbols vanish,
such that contravariant and covariant differentiation both reduce to usual partial differentiation.

Denoting the Xl, x2 and Xl axes of the Cartesian coordinate system by x, y and z,
respectively, the compact differential equation (4) for plates of variable thickness can be written
in the familiar expanded form [29]

(Dw..... ).z.t +(Dw.").,, + v(DIII.....)." +v(Dw.,,)..... +2(1- v)(Dw,x,),x, =p, (22)

where commas denote partial differentiation with respect to succeeding coordinate(s). Equation (2)
can be expressed in the traditional form

M;u =D(w..... +vw.,,), M" =D(w." + vw..... ), M", =D(1-v)III,xY' (23)

where M;u( =Mil =MIl =Mil) and M,,( =M22=M22=Mu) are the physical bending moments
and M",( =M I2 =M21 =M1

2, etc.) the physical twisting moment (all per unit length) in the plate.
The characteristic quadratic expression termed g in eqn (18) can be written out as

(24)

and substituting eqn (24) with M;u, M" and M", given by (23) into eqn (15), the optimality
condition reduces to the familiar form [20]

(25)

in the unconstrained subdomain Ou. In eqn (25), f:J. denotes the Laplacian operator f:J.( ) =
( )..... +( ).", and the original Lagrangian multiplier Ahas been scaled.

Performing the numerical solution procedure for rectangular plates, we choose the X and y
axes of the Cartesian coordinate system along two intersecting plate edges and introduce a
rectangular grid in the plate domain with equidistant spacing in the x and y directions.
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To solve the Cartesian version (22) of the plate eqn (4) together with a given set of boundary
conditions in Step II of the iteration scheme outlined in Section 2, a finite difference method is
used. Since stiffener-like thickness variation is to be expected as a result of our optimization,
the finite difference scheme is developed on the basis of low order polynomial approximations
and care has been taken to avoid as much as possible the use of approximations that implicitly
assume continuity and differentiability across the interior boundaries between constrained and
unconstrained subdomains, where first order derivatives of the thickness function and higher
order derivatives of the deflection are discontinuous.

Results and discussion
We now present some thickness distributions obtained for square, solid, elastic plates that

are acted on by uniformly distributed static loading and optimized for maximum stiffness
(minimum compliance).

Figure I illustrates a square plate whose edges are all simply supported, and the result
shown in Fig. 2 is for a plate with all edges clamped. The constrained and uncontrained
subdomains for the plate thickness functions are easily identified in the figures. Both results are
obtained for a comparatively small ratio, hmaxlhmin =1.5, between the maximum and minimum
thickness constraints, and the volume assigned to the plates is given by hJhmin =1.25, where hM

designates the thickness corresponding to uniform distribution of the plate volume. Poisson's
ratio for the plate material is taken to be v =0.25. The compliance 1T of the simply supported
plate in Fig. I is 82.4% of the compliance 1TM of a uniform, simply supported plate with the same
volume. side lengths, material and loading and the compliance of the clamped plate in Fig. 2 is
70.7% of the compliance of a corresponding uniform, clamped plate. Agrid consisting of 10 x 10
equally spaced points for a quarter plate is used in the numerical solution procedure.

The build-up of material in the corner of the simply supported plate in Fig. I is noticeable
since it cal1 be shown analytically that the thickness function vanishes along simply supported
edges and particularly at the corner between such edges, if no minimum constraint is specified
for the plate thickness (see Ref. [7,19] for a slightly different problem). However, the physical
conditions at the simply supported plate corner crucially depend on whether or not a minimum
thickness constraint is considered in the formulation for optimal design; in the case where no
minimum constraint is specified, it can be shown by means of an analytical expansion of the
solution in the vicinity of the plate corner, that the concentrated Kirchhoff reaction force in the
corner point is equal to zero. However, if even a very small, but finite, minimum thickness is
considered in the problem, then the Kirchhoff corner force is finite. Now, plate optimization
problems are known to be extremely sensitive with respect to concentrated forces [5, 30]; at
points of action of such forces, the thickness function will tend to infinity unless a specified
maximum constraint, as in the present formulation, constrains the thickness function against
such behaviour, viz. the plate corner in Fig. 2.
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Fig. 1. Simply supported square plate, hmu/h....=1.5, hJhmin =1.25; w!'IT. = 0.824. A lOx 10 grid is used

for a quarter of the plate.
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Fig. 2. Clamped square plate, hmulhatin = 1.5, hjh"'n=115; 1111,. =0.707. A 10 x 10 grid is used for a
quarter of the plate.

The thickness variations shown in Figs. I and 2 are qualitatively very similar to those
published in Ref. [20], where, however, the numerical procedure seems to be less attractive
than the approach developed in the present paper from the point of view of simplicity and
effectivity. In Ref. [20], only results associated with the ratio hmaxlhmin =1.5 are presented.

For problems associated with moderate to large hmaxlhmin ratios, we found that different
local optimal solutions could be obtained by starting the iterative procedure with different initial
thickness functions, keeping all other input and problem data unchanged. Thus, as was found
for a similar optimization problem [l7], the present problem, too, seems to possess a number of
local optimal solutions.

For large hrnaxlhmin ratios, we obtain thickness distributions with significant stiffeners as
illustrated by the quarter of the calmped plate shown in Fig. 3. This result is associated with
hJhmin =2 and hrnaxlhmin =6, and the compliance is found to be 21.8% of the compliance of a
corresponding uniform plate. Concerning the stiffeners, we should like to underline that they
are formed automatically by the optimization, that is, except for the total plate volume and
thickness constraints, no constraints, e.g. conditions concerning location, number or width of
the stiffeners, are imposed.

The solution shown in Fig. 3 is associated with the highest integral stiffness (smallest
compliance) from among other stationary solutions obtained for the given set of problem data.
In fact, the solution is determined by an incremental procedure of "optimal structural
remodeling" [31], where a uniform plate of thickness hmin is taken as the starting structure, and
where fractions of the total plate volume V are successively applied for optimal improvement
of the structure obtained from the previous step of remodeling, until the entire available volume
V is used. For large hmaxlhmin values and a given plate grid, this approach generally seems to lead
directly to the "best" local optimal solution and to demand less computer time than the
procedure considered previously, where all the available volume of plate material is applied at
one time.

symmetry
~

.~~/

~~~llj'~~~ symmetry
clamped edge

~~mJ
plate corner I clamped edge

Fig. 3. Quarter of clamped square plate, hma.1h..i• =6, hjhmi• =2; 7T/7T. =0.218. A 10 x 10 grid is used for
the quarter plate.
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However, the numerical solution for the clamped plate in Fig. 3cannot be designated as the
final answer to the problem considered, because we have found that solutions associated with
large hmaxlhmiD ratios are significantly dependent on the fineness of the grid used in the
numerical solution procedure. The result in Fig. 3 is obtained on the basis of 10 x 10 equally
spaced grid points for one quarter of the plate. If we solve precisely the same problem as in Fig.
3, but use 20 x 20 equally spaced grid points for the quarter plate, we obtain the result shown in
Fig. 4,t where more stiffeners are formed, and where the compliance is now 20.4% of the
compliance of the uniform reference plate.

Thus, if finer and finer grids are used, we find decreasing compliances and that more and
more stiffeners are formed. These stiffeners become thinner and thinner since V, hmax and hmiD

are not changed. Increasing the grid fineness, a possible limiting design could not be obtained
within the capacity of our computer and probably cannot be found at all. Thus, the present
formulation of the optimization problem does not seem to possess a global optimal solution if
hmaxlhmin is large.

S. ANNULAR PLATES
In order to study the fundamental questions concerning the behaviour of numerical

solutions and the very formulation of optimization problems for solid plates in greater detail,
we shall now use a polar coordinate system r, (1 for reasons of convenience that will be
apparent in the sequel. Taking r =XI and (1 =X2, the metric tensor for the plate mid-plane
becomes

(26)

which implies that from among the Christoffel symbols

(27)

only the following will be different from zero,

(28)

Using now the general rule for covariant differentiation of tensors, we find that the
contravariant, mixed and covariant components of the moment tensor in eqn (2) can be

symmetry

/

~~/
symmetry

plot. cornerI clamped edge

Y... 4. Quarter of a clamped square plate, 11-.111_=6, IIJh,. ... 2; 'Ill"'. =0.204. A2Ox20 grid is used for
the quarter plate.

tit is interestiDa to note that this result has a remarkable similarity with a result obtained by Prof. Praaer[32] for a quite
different problem, namely miIlimum-weilht desian of rectanpIar IriIIaaes &pinst plastic collapse; the distribution of
stiffenen in FJ8. 4 of the present paper stronaJy resembles tbe optimal beam layout in Fig. 4b of Ref. (32].
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expressed in terms of the deflection wand plate rigidity D as follows,

M I1 = MIl = M I1 = D ( W,rr +~ W.r+? W'98)

M22=r-2M2=r-4M =Dr-2(vw +lw +~w )2 22 .rr r ,r r ,98

M I2 = M 21 = M I
2 = r-2M2) = r-2M 12 = r-2M21 = (1-v)Dr- 1GW,B) .

.r
(29)

Along a curve r =const, the Kirchhoff shear force in eqn (7) has the form Q=- M~1+

rM22 - r- IMI1
- 2M~i and corresponds physically to the radial (Kirchhoff) shear force Qr per

unit length. By means of (29), this quantity can be expressed by wand D as

Qr =- D,r (w'IT+~W.r+?W.98) - D (w'IT+~ W,r+~ W'98)
.r

-(l-v)D! (! W ) -2(1-v)D ! (! w.) .rr·H ,B rr ·•,r ~

(30)

The physical moment components, i.e. radial bending moment Mm tangential bending
moment MBB and twisting moment MrB = MBr (all per unit length) are defined as follows in terms
of the mixed moment tensor components, and can be expressed by wand D as

MIT = Mil = D ( W,IT +-; W,r +? W,BB)' MH= Ml = D (vw. rr +~ W,r +~ W,H)'

MrB = MBr = V(M,2M2
1
) = (1- v)D GW,B); (31)

Via eqns (29), the function g in eqn (18) is seen to take the following form in terms of the
physical moments,

(32)

By means of eqns (26)-(32) it would now be a simple task to specialize the governing tensor
equations for our plate optimization problem to a general description in polar coordinates, but
this will be omitted here.

Instead, we shall from now on assume that the plate is rotationally symmetric, Le. that its
thickness h and bending rigidity D depend only on the distance r from the symmetry axis,
implying h = h(r) and D = D(r). Furthermore, we shall limit outselves to considering load
distribution functions p(r, 8) of the special type

p(r, 8) =f(r) cos n8, (33)

where f is a given function that only depends on r and where n is a given integer. Equation (33)
thus models a rotationally symmetric load distribution for n = 0, whereas eqn (33) for n"#; 0
models a load p(r,8) that has the trace f(r) for 8=0 and varies harmonically with 8 in the
circumferential direction. Assuming the boundary conditions to be homogeneous, the plate
deflection function w(r, 8) then has the simple form

w(r, 9) =u(r) cos n8. (34)

The assumptions introduced here offer the mathematical simplification that the governing
non-linear partial differential equations of our optimization problem reduce to ordinary
differential equations after a separation of variables and this means in turn that much less
computer space and time are required for the numerical solution procedure. These sim-
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plifications do not impede our further study of plate stiffener formation; the rotationally
symmetric plate possesses the possibility of increasing its stiffness against circumferentially
varying loads p(r,8) by forming concentric, circumferential stiffeners that may effectively
counteract the circumferential curvatures of the deflection function w(r, 8).

Now, substituting (29) with w given by (34) into the equilibrium eqn (1), cos 11.8 factors out
and we obtain an ordinary differential equation for the plate rigidity function D(r) and the
8-independent part u(r) of the deftection function. After some manipulation, this equation can
be written in the comparatively compact form

-(1-1I)D'n2GU)' =f(r)r, (35)

where primes denote differentiation with respect to r. Equation (35) replaces eqn (4) in the
formulation of our new optimization problem.

For deflection functions in the form (34), the stress resultants in eqns (30) and (31) reduce to

Q, =q, cos n8, M" =m" cos n8, M.. =m.. cos 11.8, M" =mit sin 11.8, (36)

respectively, where the 8-independent parts of the stress resultants are given by

q,= -D' (u~+;u'-~u)-D (u~+~u'-~u)' +(1-lI)D ~2 Hu)'

m" =D (u~+; u'-~ u), m.. =D (lIU~ +~ U'-~ u), m" =-(1-lI)D (~u)', (37)

respectively.
In order to establish the optimality condition, we now substitute eqn (31), with Mm M.. and

M" given by eqns (36), into (A20) and perform a separate integration over 8 in the interval
Os 8S 217', thereby ruling out 8-dependence. Upon applying the usual argument from the
calculus of variations, using eqn (3) and scaling Lagrangian multipliers A, A and Ie, we obtain
the optimality condition in the form

h.....[(m" +m..)2 +2(1 +lI)(m~ - m"m..)] = A-,\ +I(

which takes the place of eqn (15) for the present problem.
Defining the function g as

g(r) = (m" +m..f +2(1 + lI)(m~ - m"m..),

from now on, we instead of eqn (19) obtain the formula

(38)

(39)

{

hmu if (g(r)/A)I/4 ~ hfllU,

her) = (g(r)/A)I/4, r E rll

hmill if (g(r)/A)1/4 s hmin,

r E rca

(40)

for the optimal, symmetrical plate thickness function her). Here, ru , r. and ret denote the
unions of sub-intervals for the radial distance r, where the plate thickness is constrained from
above, unconstrained and constrained from below, respectively.
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Finally, substituting eqn (40) into eqn (9) and solving for A, we obtain the formula

[
f g(r)I/4 r dr ] 4

A= 2~ - hminl r dr - hmaxf r dr '
~b ~d

(41)

which takes the place of eqn (20) for our new problem.
As objects of optimization, we now consider annular plates with various combinations of

boundary conditions at their inner and outer circular edges. In accordance with eqns (5a-c) we
deal with simply supported, clamped and free plate edges, and in the present notation
corresponding boundary conditions can be expressed as

u(r*) =0, m"(r*) = 0

u(r*) =0, u'(r*) =0

m"(r*) =0, q,(r*) =0,

(42a)

(42b)

(42c)

respectively, where q, and m" are given in terms of u and D by eqns (37) and where r* denotes
the radius of the inner or the outer plate edge.

In the iterative solution procedure of Section 2, where u now replaces w, we in Step II solve
the present version (35) of the plate equilibrium equation (4) by means of the finite element
method, sub-dividing the distance between the inner and outer plate edges by means of a
number of equally spaced nodal points, where the deflection u and slope u' are used as the
nodal unknowns, and where continuity is imposed on these quantities. Each element between
two adjacent nodal points has a constant thickness and its shape function for the deflection u is
taken to be a complete third order polynomium. This approach is chosen because the different
boundary conditions (42a-c) are easily imposed, and because it admits thickness jumps between
neighbouring elements, which is a behaviour the plate may tend to exhibit.

When the deflection function u(r) is determined in Step II, we in Step III compute mm m"
and m,. by means of eqns (37) and the function g(r) by eqn (39). In Step IV, A is then
determined by eqn (41). The computation of the new values of the constant thicknesses of the
elements in Step IV is performed by means of eqn (40) on the basis of determining for each
element sub-interval a constant, properly averaged value of the function g in eqn (39).

Results and discussion
We now present a number of numerical results obtained for annular plates acted on by load

distributions (33) with f constant and n a given integer. In all the examples, the inner plate
radius is taken to be one-fifth of the outer radius, the ratio between the thickness constraints is
hmaxlhmin = 5, and the total plate volume is given via the ratio h"lhmin =1.6579, where h" is the
plate thickness corresponding to a uniform distribution of the available volume over the plate
area. Poisson's ratio of the plate material is taken to be p = 0.25. In the following we state the
compliance 1T of an optimized plate as a fraction of the compliance 1T" of a corresponding
uniform plate that has the same loading, boundary conditions, total volume and inner and outer
plate radii and that is made of the same material.

Figures 5(a)-(i) illustrate numerical solutions for annular plates with the nine possible
combinations of clamped, simply supported and free inner and outer plate edges. Each solution
is illustrated by a radial section through the plate, together with the 8-independent part u(r) of
the deflection function. All the results are associated with the load wave number n =4 and 100
elements are used in the numerical procedure. It is noted that circumferential stiffeners are
formed in all the plates, and it is also interesting that some of the plates with simply supported
and free edges build up ring-shaped edge reinforcements that reduce the slope of the deflection.

To investigate the influence of the load wave number n on the numerical results, we take the
clamped-clamped plate as an example and first optimize it subject to n =6 and 10, respectively,
again using 100 elements. The results are shown in Figs. 6(a)-(b), and may be compared with
the result for n = 4 in Fig. 5(a). As is to be expected, the number of stiffeners tends to increase
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Fig. S. Results of optimizing annular plates of different boundary conditions. Solid curves show radial
sections throUllb the plates and dashecl-<1otted lines indicate the ,-independent part II of the deftection
functions. The load and deftection wave number n in the circumferential direction is equal to 4 in each
example. The inner plate radius is one-fifth of the outer radius aDd the results are based on subdividing the
plates into 100 elements. (a> Clamped-clamped plate, "''11'• .. 0jJ6. (b) Simply supported-simply supported
plate, mfr. - 0.60S. (c) Free-free plate, mfr. - 0.265. (d) Clamped-free plate, mfr. - 0.251. (e) Simply
supported-free plate, m'll'. -0.256. (£) Free-cIamped plate, wlfr. =0,617. (J) Simply supported-clamped
plate, mfr." 0.564. (h) Clamped-simply supported plate, mfr."0.584. (i) Free-simply supported plate,

wlfr• .. 0.645.

with increasina II. Optimizing a clamped-clamped plate for It =0, 1and 2, respectively, see Figs.
7(a)-(c), none of our numerical results exhibits stiffener-like behaviour even though we increase
the number of elements to 300, thereby favouring formation of possible stiffeners. which should
be expected in view of [3].

Let us now investigate how the number of elements used affects the results. takina the
clamped-clamped plate associated with n =4 as an example. Figures 8(a)-(d) show the results
obtained by usina ISO. 200. 2SO and 300 elements. respectively. to cover the interval of the
radial distance from the inner to the outer plate radius. Figures 8(a)-(d) illustrate that the
number of stiffeners increases rapidly and that the compliance decreases as the number of
elements is increased. Moreover. the stiffeners are seen to become thinner and thinner as the
number of elements increases. the widths of most of them in fact beina equal to the width of
one element only.
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Fig. 6. Doubly clamped annular plates optimized for different load wave numbers n: (a) n '" 6. 11hr. ==
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Fig. 7. Doubly clamped aMular plates optimized for small load wave numbers n. (a) n == 0.11'/11. == 0.463. (b)
n == I. 11'/11. == 0.489. (c) n == 2. 11'/11. == 0.589. The plates are subdivided into 300 elements.

These results clearly indicate that no limiting solution will be found if we continuously
increase the number of elements, and this implies that there is no global optimal solution to the
present formulation of our optimization problem for sufficiently large values of the ratio
hmaxlhmin'

Optimization with segmentwise constant thickness and a minimum stiffener width constraint
From the results reported above. the natural question arises of whether an optimization

problem associated with a large hmulhmin ratio will possess a global optimal solution if. in
addition to the minimum and maximum thickness constraints, we consider a minimum allowable
width of possible stiffeners in the mathematical formulation of the problem.

To study this question. we impose the condition that the thickness function may not vary
within plate segments consisting of a given number of adjacent finite elements. We then solve
the problem a number of times where different numbers of elements are used. but where the
proportion between the number of elements within the segments of constant thickness and the
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FII. 8. The dtpendence of tile desip of a doubly clamped annular plate with It ..4 on the number of
elements used. (a) ISO elements, flf"." 0.536. (b) 200 elements, flf". == 0.525. (c) 2SO elements, flf"...

0.433. (d) 300 elements, flf1f• .. 0.428.

total number of plate elements is maintained, such that the absolute values of the radial
distances of the plate segments are the same in each calculation.

We find that problems associated with a sufficiently large minimum width constraint for
possible stiffeners seem to have a global optimal solution, because the same plate design is
obtained independently of the starting design and the number of elements used. If a small
minimum width constraint is specified, however, the results are less conclusive since different
local optimal designs can be obtained by starting out from different initial designs and using
different numbers of elements.

6. CONCLUDING REMARKS

Some fundamental questions concerning the mathematical formulation for optimal desip of
plates on the basis of thin plate theory, are investigated in this paper. Our numerical results
show that the geometrically constrained formulation considered, sipificantly prompts the
formation of plate stiffeners. However, as in a geometrically unconstrained formulation
investigated in [17], we find that a number of local optimal solutions exist and that a possible
global optimal plate thickness function does neither exist in the class of smooth functions nor in
the class of smooth functions with a finite number of discontinuities. Similar results are to be
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expected for corresponding formulations of optimal plate design with respect to minimizing the
largest deflection, maximizing the fundamental vibration frequency, buckling load, etc.

The current results indicate clearly that the global optimal design is a plate which, at least in
some regions, is equipped with an infinite number of infinitely thin stiffeners. Indeed, this has
been confirmed by follow-up research [33, 34] on axisymmetric annular plates. In Refs. [33,34],
which deal with static compliance and transverse vibration frequency design, respectively, new
optimal design formulations have been developed on the basis of a revised plate model where
the density of infinitely thin stiffeners is used as the design variable and where the plate bending
rigidity becomes an orthotropic function of the stiffener density.

Acknowledgements-Authors thank F. 1. Niordson for many useful discussions. The first author gratefully acknowledges
the reception of a scholarship from the Danish Ministry of Education.
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APPENDIX
In this section, we sball derive in some detail the Euler-LagrallIe equations expressilll the conditions of stationarity of

the functional .,,* in eqn (12) witb respect to arbitrary admissible variations of the deflection wand the plate thickness h,
respectively,

Vorilltion of w yields the stationarity condition

(AI)

(A2)

wbere the expression of M-- in terms of w is siven by eqn (2). Usilll the identity

."d.d_8M-- = d.,(",d,8M--)-(d.,flXd-sM·-)

to replace the second intqral in (AI) by two new intearaJs and applyilll the diveracnee theorem to the first of them, we get

- In P8w dO +f.n.~M"(w)dlll- L{d.,fI}{d-sM--(w)} dO =0,

where III is the bo\llldary curve of the domain n and n. is the outward unit normal vector in the x' plane to this curve.
An anaJoaous treatment of the last term on the r.b.s. of eqn (A2) sives the equation

- InP8wdO+£ n.",d_8M--(W)dlll-t 8M--CW)II~fldlll+L8M"(w)d.,d_fl dO =0. (AJ)

In the third intearal of eqn (AJ) we now put d.fI = ;n. +,I., wbere t. is the unit tanpnt vector to III and where ; and ,
denote the scalar slopes of the function" in the normal and talllCntial directions, respectively, to the curve III. Usina then
the identity

and notina that , ... ntiJIII, we can write eqn (AJ) in the form

_ ( p8w dO+1 " {n.d•8M--(w) +8(8M--Cw)t.n.)} dill _" 8(!)8M--Cw)t,n,) dill
In T.. 811I T.. 811I

-f. .cfl)8M--(w)n.n_dlll+L8M"(w)d.d_fl dO =O. (A4)

Here, the Kirchhoff shear force Q(w) siven by cqn (7) and the effective bendina moment M.(w) siven by eqn (6) can be
introduced in the first and third curve intearaJs, respectively, Since the curve III is closed, the second curve integral will
vanish if III is smooth, but if III has one or more comer points x,-. j - 1, 2, ... , where the vecton t, and 11_ change
discontinuously from t; and n. to t; and n•• respectively, the second curve integral will become equal to

-+{!)8Q*(w)}••••,..

where

(AS)

identifies the colPDtrated Kirchholf force at a possible comer point X;', Hence, we can write eqn (A4) as

- InP8wdO-£ 'l8Q(w)dIII+ ~{!)8Q*(W)}••••r,-f. .(,,)8M.(w) dill +L8M"(w)d.d_fl dO - 0. (A6)

Let us now address our attention to the last integral on the I.b.s. of eqn (A6). Usina the shorter notation 8/ for this
intqral,

and introducina covariant differentiation throuIbout in the expression for M-- in eqn (2), we have

M'-( w) - DA"""d.,d.w.

where the fourth order metric tensor A""" is defined by

Equation (A7) can then be written as

(A7)

(AS)

(M)

(A10)



322 KENG-TuNG CHENG and NIELS OLHOFF

but since the tensor Aa,~. in eqn (A9) possesses the symmetry property Aa,~. = A""~ due to symmetry of the metric
tensor aa~, it follows from eqn (A8). when this equation is expressed in terms of 7/. that eqn (AIO) can be written in the
form

(All)

where the moment tensor is now based upon the function 7/.
Using the identity

to replace the integral (All) by three integrals. applying the divergence theorem to the first two of them. we write
d~8w =II~~ +t/l~ where '" and t denote the scalar slopes of w in the directions normal and tangential to the curve w.
respectively. Then. upon noting that t = awlaw and using the identity

M~()t St = a(MO~(1/)tBll08w) _ a(M~(1/)t,no) 8
7/ /1"0

"" aw aw w

we obtain the following expression for the integral 8/,

(AI2)

Since MO~ is symmetric, it is now possible to introduce in the first and third integrals the effective bending moment Ms(7/)
and Kirchhoff shear force Q(11) based on 11 by means of eqns (6) and (7). Furthermore, the second integral of eqn (A 12)
vanishes if the curve w is smooth, but equals

- ~ {Q·(7/)8w} .,

where Q. is defined in eqn (AS). if the curve w has corner points x,o. Consequently, we can write eqn (A 12) in the form

8/=1. Ms(11)8",(w)dw+1. Q(11)8wdw- ~{Q·(7/)8w}.,_,,-+ ( {dod/lM~(11)}8wdO. (A 13)T.. 1.. , In

Now, substituting this expression for 8/ into eqn (A6) via eqn (A7) and collecting terms, we have the variational
equation

-f.. 118Q(w)dw+ ~{118Q.(W)}.,.",-f.. "'(11)8Ms(w)dw +1.. Q(7/)c5wdw- ~{Q·(7/)8w}.,.",

+f.. Ms(7/)81j1(w)dw+ In{dod/lMO/l(l1)-P}c5WdO=O, (AI4)

which expresses the stationarity of 17'•• eqn (12), for arbitrary admissible variation of w. To be admissible, w must satisfy
the boundary conditions (Sa), (5b) or (5c) for a particular problem.

Since 8w is arbitrary, it follows from eqn (AI4), taking eqn (2) into account, that the function l1(Xa
) must satisfy the

partial differential equation

(AI5)

in the domain 0, but this is the same differential equation as governs the deflection w(xa ), see eqn (4). Moreover, it follows
from eqn (A14) that, at the plate boundary w, (i) the function 11(X8

) must vanish if the distributed Kirchhoff shear force
Q(w) of eqn (7) and concentrated Kirchhoff forces Q·(w) of eqn (AS) at possible corner points xt are not specified, (ii)
that the slope "'(11) = 1I°d.11 of the function 11 normal to /1/ must vanish if the elective bending moment M.(w) in eqn (6) is
not specified, (iii) that Q(l1) and Q·(l1) must vanish if the denectlon w IS not specllied and (IV) that M.(l1) must vamsh It
the slope 'I'(w) = /l 8 daw of the deflection w normal to 61 is unspecified. All these results clearly imply that the function
l1(Xa ) must satisfy the same particular set of boundary conditions (Sa), (Sb) or (Sc) as is specified for the deflection function
w(xa ) in a given problem.

Since the functions l1(Xa ) and w(x8
) are governed by the same differential equation and the same set of complete boundary

conditions for a partiCUlar problem, they must be identical,

l1(XO).. w(XO). (AI6)

It is noted that this result is closely connected with the fact that the differential operator on the l.h.s. of eqn (4) is
self-adjoint.
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(AI?)

(AlB)

Variation of h gives the following condition of stationarity of the functional 11" in eqn (12) if we use the result (AI6)
and introduce the moment tensor U--(h, w) given by eqn (2),

In wd.,d_6U--(h, w)dO+ In [-AU -IC)6hdO=O.

TreatiDa the first term in analogy with our manipulation of the second term in eqn (AI) during the steps from eqn
(AIHA6), we obtain

-f. w6Q(h, w) dill +~ {w6Q'(h. w)}...... - f. '1'(w)6U.(h, w) dill

+L6U--(h, w)d.,d"w dO +In [-A U -IC)6h dO =0,

but here. the three first terms vanish for any of the sets of boundary conditions (Sa), (Sb) or (Sc) under consideration. Now,
writiDa au-- u a(DU--/D). notiDa that U--/D does not contain h, and using the weD known result(281 that the tensor
d.,d"w, i.e. the covariaDt curvature tensor, can be expressed in terms of the moment tensor as

we obtain the following equation by performing the variation with respect to h in eqn (AlB) and coDectiDa terms,

In {~~ (1- ~jjZ[(1+II)U--u..- IIM.,.U/l-AU-IC} 6hdO=O.

Since 6h is arbitrary, we thus have

which constitutes the optima1ity condition for our problem.

(AI9)

(A20)

(A21)


